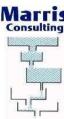
FMEA

- Basic principles-


Paris, 3 January 2011 Version 1.0

FMEA allows to identify and rank failures or failure risks of an equipment or a process in order of importance

- Failure Mode and Effects Analysis (FMEA) is a rigorous method that is used in the form of a working group.
- This analysis has various application domains:
 - during the design of equipment where anticipated reliability is a significant concern,
 - on an existing machine where reliability needs to be improved,
 - on an existing process that experiences frequent failures and requires reliability correction,
 - during the industrialization of a new product where anticipated reliability is a significant concern in terms of cost and criticality.
- The FMEA has three main objectives:
 - improve reliability by preventing existing or potential defects or malfunctions,
 - consider all requirements to challenge specifications and control plans,
 - Set quantified reliability objectives.

The use of FMEA (Failure Mode and Effects Analysis) on equipment or processes enables significant gains in various components of industrial performance

- An increase in production volume:
 - by reducing downtime
 - by limiting slowdowns.
- Optimization in stocks:
 - finished products: Reduction of safety stocks implemented due to fear of breakdowns and/or rejects
 - spare parts: Prioritization and knowledge of failures.
- Indirect gains:
 - formalization of know-how/information
 - improvement of communication between departments (Production/Maintenance)
 - improvement of safety
 - improvement of service quality (reliability of delivery times).

The FMEA is a tool for analyzing and addressing malfunctions, consisting of seven steps.

Steps	Content	Tools
Preparation and Information	Machine selection Method training	
Equipment breakdown into functional units	Functional description	
Analysis and evaluation of failures		Rating grids O, G, D FMEA grids
Prioritization of failures		PARETO diagram
Analysis of critical failure causes		5M Diagram Cause-and-Effect Tree
Definition and implementation of improvement actions	Development of the implementation schedule	
Monitoring and implementation of corrective actions		

The entire process requires between five and eight working meetings.

Step 1: Preparation and Information

Objectives:

- choose the machine to be studied.
- form the working group.
- plan the work meetings.
- introduce the general principles of the method.
- collect data related to the equipment: process description, plans, functional diagrams, specifications, maintenance and failure history, process-related issues, quality data, etc...
- The working group should include representatives from all functions involved with the machine:
 - production department (operators, supervisors, etc.).
 - maintenance department (specialists, methods experts, etc.).
 - methods department...
- The working group is led by a facilitator who ensures adherence to the method.
- Experts may be invited on an as-needed basis.

Step 2: Equipment breakdown into functional units

- Objectives:
 - decompose the process into elementary operations,
 - describe the elementary functions that contribute to the realization of each operation.
- A function is a set of elementary tasks performed by equipment to provide a necessary and essential result for the next function.
- The decomposition is carried out by the working group, and the session is led by the facilitator.

Example: A table describing the cutting operations and their functions

Operations	Elementary functions					
Supply of sheets	 Bring the sheet pallet Insert the pallet into the margin Center the stack of sheets 					
Margin	 Vacuuming with a suction group Bring the tablecloth Position the sheet Correct the sheet 					
Cut	Pinch the sheetBring the sheet onto the platenCut					
Peeling	 Bring the sheet onto the tool Pinch the waste Eject the waste 					

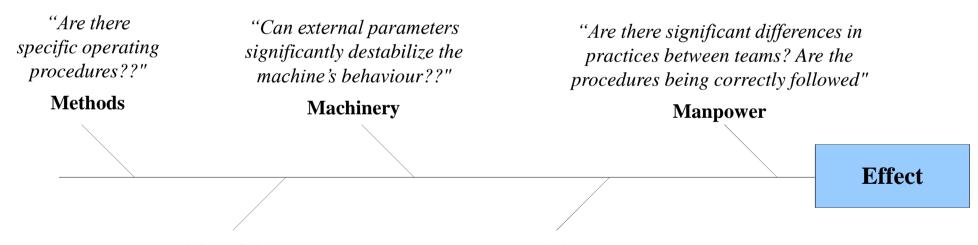
© 2011 - Marris Consulting. All rights reserved.

Step 3: Analysis and evaluation of failures

- Objectives:
 - to identify all failure modes (existing and potential) for each functional unit,
 - define the criticality of failure modes.
- The criticality depends on three parameters:
 - severity, it allows assessing the importance of the consequences of a failure:
 - there can be multiple severity criteria, such as productivity, non-quality, safety, and environment.
 - when multiple severity criteria are considered, the overall severity is determined by selecting the maximum value or the average value,
 - occurrence, it corresponds to the frequency of failure occurrence,
 - detectability, which indicates the ease of detecting the failure. The detection objectives include :
 - preventing the occurrence of the failure (e.g., indicators, patrols)
 - and reducing the time required to search for the cause (e.g., diagnostic aid guides...).
- The criticality is calculated as **Severity** x **Occurrence** x **Detectability**.
- Each parameter is evaluated on a scale from 1 ("low evaluation") to 5 ("high evaluation").

Step 4: Prioritization of failures

- Objectives:
 - to prioritize failure modes
 - select the most critical ones that need to be addressed,.
- Failure modes are hierarchically prioritized through the:


OPERATIONS	ELEMENTARY FONCTIONS	FAILURE MODES	C	ONSEQ	UENCES		PRINCIPAL CAUSES	G _{max}	0	D	C
			Type 1	G1	Type 2	G2					C

- The working group sets threshold limits above which a failure is considered critical:
 - either based on parameters (e.g., severity must be less than 4)
 - or based on criticality (e.g., failure mode criticality must be less than 15)
- The group then selects the failure modes that they will subsequently work to resolve

Step 5 : Analysis of critical failure causes

- Objectives:
 - rechercher les causes des défaillances dont la criticité et supérieure au seuil de criticité retenu,
 - rechercher la ou les causes premières pour chaque cause,
 - hiérarchiser les causes identifiées (de la plus probable à la moins probable) pour rendre plus efficace la recherche de solutions.
- Analyse des causes des défaillance les plus critiques : le diagramme 5M

Materials

"Is the quality of raw materials subject to significant variations"

Means


"Are the available resources/tools appropriate?"

Step 6 :Definition and implementation of improvement actions

Objectives:

- define one improvement action for each critical failure cause.
- evaluate the residual criticality.
- choose the actions to be implemented.
- establish the implementation schedule for the actions.
- The proposed actions can reduce one of the three components of criticality:
 - reduction of detectability through:
 - Improved diagnostic assistance (diagnostic guides).
 - Enhanced preventive maintenance (rounds, 5S methodology).
 - Implementation of anomaly detectors,
 - reduction of occurrence through improved component reliability,
 - reduction of severity through improved maintainability or faster repair capability (redundancies, backup systems, SMED...).

Step 7: Monitoring and implementation of corrective actions

Objectives:

- continuously monitor the progress of action implementation.
- perform periodic updates of criticalities.
- define corrective actions

Title

ACTION SHEET

IV.		пс							
Description									
Chart									
		Cri b	ticali efore	ty		a	ically fter imate))	Cost =
Estimates	G	0	D	С	G	О	D	С	

SUMMARY OF ACTIONS ON A MACHIN

PRINCIPAL CAUSES	N _o	ACTIONS	RESPONSIB LE	DEADLINE	COST	CRITICALLY BEFORE	CRITICALLY AFTER

The limitations of FMEA

- FMEA does not allow for a cross-sectional view of possible failures and their consequences:
 - If two failures occur simultaneously in two subsystems, what is the impact on the overall system?
 - For example, in the aviation industry, airplane accidents are rarely caused by a single failure; they are generally linked to multiple incidents that occur simultaneously.
- It is common for fanciful risks to be unnecessarily associated with FMEA:
 - For example, "Someone may break their leg while skiing».